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Abstract

In this paper, a hyperbolic system governed by boundary control, modeled as an optimal control
problem is discussed. The control problem is formulated using boundary control mechanisms
for the microbeam model to control undesirable free vibrations in the system. Wellposedness
of the optimal solution on the control set is demonstrated and controllability of the problem
is investigated. Solution procedure of the boundary control characterization of the microbeam
model is examined by Maximum Principle. The necessary conditions for the optimal con-
trol problem are obtained thanks to this principle and these conditions are shown to be also
sufficient conditions due to convexity. The proposed approach is based on transforming the
problem into a system of partial differential equations. The obtained distributed parameter
system model includes state and costate variables with terminal time initial conditions. An
eigenfunction expansion method is used for the solution of the optimality conditions derived
from the Maximum principle. Numerical results are obtained by using the computer codes
produced in MATLAB c© and presented in graphical and table forms. Numerical simulation
studies show the applicability and effectiveness of this approach.
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1 Introduction

Microbeams are beams of typically on the order of microns and sub-microns thicknesses that are
common in micro-and nano-electro-mechanical (MEMS and NEMS) areas. Micro-electronics, micro-
actuators and micro-sensors are the parts that make up the system called MEMS [1, 2, 3, 4].
With the rapid development of nanotechnology in recent years, micro-electro-mechanical systems
are entering our lives more intensively [5, 6]. Microbeams can be composed of different material
combinations like metals, conventional silicone-based materials, polymers or functionally graded
materials [7, 8, 9, 10]. The control design of the microbeam by using control actuators is an
important research area [11, 12, 13]. Control mechanisms can be applied by means of boundary
conditions on the system or through an internal force. Boundary control is a way to control of
a distributed parameter system in which the control action is implemented to the system via its
boundary conditions.

Guzman and Zhu [14] used a single boundary control to examine the exact controllability prop-
erty of a microbeam. Korpeoglu et al. [15] studied optimal boundary control for a beam modeled
based on second strain gradient theory by means of maximum principle to control undesirable vi-
brations in the system. Zhao et al. [16] developed the nonlinear microbeam model by using the
strain gradient theory and also the nonlinear free vibration is investigated. Kong et al. [17] used
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a variational approach and the strain gradient elasticity theory to derive the static and dynamic
models for Euler–Bernoulli beams. The second strain gradient theory is very strong non-classical
continuum theory that captures the behavior of micrometer and nanometer sized structures.

In this paper, the optimal control of a microbeam model is designed by means of controls placed
on the boundary condition with its 4th order space derivative. The performance index seeks to
minimize the magnitude of the performance measure that is defined as a dynamic response the
beam as well as the control input over the time interval. Maximum principle is applied to get
the optimal control solutions. The costate (adjoint) variable is defined to reformulate the optimal
control problem in terms of Hamiltonian function. The state equations, the costate equations, op-
timality conditions and terminal time initial conditions are expressed with the help of Hamiltonian.
Simulation operation is performed to show the effect of the suggested controller on the microbeam.

Numerical results are presented using computer simulation produced in MATLAB to confirm
that the control scheme is successful in producing the desired result and appropriate to reduce the
vibration of the beam. Besides, the mathematical methods suggested in this article are precise
and applicable. The importance of the study is also that it deals with optimal boundary control
that is achieved based on space derivatives of boundary states of a microbeam model by means of
Pontryagin’s maximum principle.

2 Mathematical modeling

The equation of motion for the microbeam model derived based on the strain gradient theory and
Hamilton’s principle, governed by boundary controls p(t) is given by [16],

ρAztt + Szxxxx −Kzxxxxxx = f(x, t), (x, t) ∈ (0, L)× (0, T ),

z(0, t) = 0, z(L, t) = 0,

zxx(0, t) = 0, zxx(L, t) = 0,

zxxxx(0, t) = p(t), zxxxx(L, t) = p(t),

z(x, 0) = za(x), zt(x, 0) = zb(x).

(2.1)

where z = z(x, t) ∈ D = (0, L) × (0, T ) is the deflection of the microbeam, A > 0, L > 0 and
ρ > 0 are the parameters correspond the cross-sectional area, the length and the density of the
microbeam, respectively. The parameters S and K are size effects of the microbeam in the order
of microns [22]

S = EI + µA(2`20 +
43

225
`21 + `22), K = µA(2`20 +

4

5
`21) (2.2)

where E > 0 is the Young modulus, µ > 0 the shear modulus and I > 0 the area moment of
inertia. `0 > 0, `1 > 0 and `2 > 0 are the independent material parameters. The Euler-Bernoulli
beam model is obtained when `0 = `1 = `2 = 0. In the next section, the wellposedness results and
controllability property are presented.

3 Wellposedness and controllability

The aim of this section is to show the wellposedness and controllability of the control system (2.1).
In consequence of being able to say the existence of the solution using Picard’s existence theorem
[19], it is required to have solutions for the equation system (2.1) with data p(t) ∈ L2(0, T ), f ∈
L2(0, T ;L2(0, L)), za(x) ∈ H1(0, L), zb(x) ∈ L2(0, L) , z, ∂

iz
∂ti ,

∂iz
∂xi ,∈ L2(D), i = 0, 1, ..., 6. L2(D)



Optimal control system of a microbeam model with the boundary term 149

denote the class of square integrable functions with a usual inner product and norm in the domain
D. Moreover, equation system (2.1) can be written as ordinary differential equation form and
have a solution under favour of linear Picard-Lindelöf existence-uniqueness theorem. The following
lemma shows the uniqueness of the solution to Eqs. (2.1) based on energy method.

Lemma 3.1. Equation system (2.1) with f = 0 and p = 0 has a unique solution.

Proof. Suppose that the problem has two solution z1(x, t) 6= z2(x, t) with f = 0, p = 0 and za(x) ∈
H1(0, L), zb(x) ∈ L2(0, L). Set the difference function w(x, t) = z1(x, t)−z2(x, t) for the microbeam

ρAwtt + Swxxxx −Kwxxxxxx = 0, 0 ≤ t ≤ T, 0 ≤ x ≤ L, (3.1)

with zero initial conditions
w(x, 0) = wt(x, 0) = 0, (3.2)

and the following boundary conditions

w(0, t) = w(L, t) = wxx(0, t) = wxx(L, t) = wxxxx(0, t) = wxxxx(L, t) = 0. (3.3)

If w(x, t) is shown that it is identically zero in D, the uniqueness of the solution is obtained. Let
us examine the energy integral [14] as

E(t) :=
1

2

∫ L

0

(
| wt(x, t) |2 +

S

ρA
| wxx(x, t) |2 +

K

ρA
| wxxx(x, t) |2

)
dx, t ∈ [0, T ]. (3.4)

Differentiating E(t) with respect to t gives

dE(t)

dt
=

∫ L

0

{wtwtt +
S

ρA
wxxwxxt +

K

ρA
wxxxwxxxt}dx

=

∫ L

0

{wtt +
S

ρA
wxxxx +

K

ρA
wxxxxxx}wt(x, t)dx

+

{
S

ρA
(wxxwxt − wxxxwt)

∣∣∣∣`
0

+
K

ρA
(wxxxwxxt − wxxxxwxt + wxxxxxwt)

∣∣∣∣`
0

}
.

(3.5)

By using Eq. (3.1) and boundary conditions (3.3), it follows that dE(T )
dt = 0, that is, E(t) =

constant.
Taking the initial conditions (3.2) into consideration, the following equality holds

E(T ) = constant = E(0)

=
1

2

∫ L

0

{
w2

t (x, t) +
S

ρA
w2

xx(x, t) +
K

ρA
w2

xxx(x, t)

}∣∣∣∣
t=0

dx = 0.

Then it follows from Eq. (3.4) and from the initial conditions (3.2) that w(x, t) is identically equal
to zero in D, that is, z1 = z2, which completes the proof. q.e.d.

By considering the uniqueness solution of the beam system, it is determined that the control
function is unique by the reason of the uniqueness of p(t). In this case, the studied system is
observable due to having a unique solution and unique control function. Briefly, the system defined
by Eqs. (2.1) is controllable according to the Hilbert uniqueness method [20, 21].
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4 Optimal control design

It is desired to determine an optimal control function p(t) that is placed on the boundary conditions
for damping out the undesired vibrations. In accordance with this purpose the performance index
that is minimized over the time interval 0 ≤ t ≤ T is defined in two parts: The first term measures
the dynamical response of the system at the terminal time T and the second term is the penalty
function that minimizes control force’s expenditure of used in [0, T ]. A control that satisfies the
control constraints during the time interval [0, T ] is called an admissible control and the set of
admissible controls by Pad is as given follows:

Pad = {p(t)|p ∈ L2(0, T ), |p(t)| ≤ a0 <∞, a0 is a constant } (4.1)

The performance index is given by

J [p(t)] =

∫ L

0

[µ1z
2(x, T ) + µ2z

2
t (x, T )]dx+

∫ T

0

µ3p(t)
2dt, (4.2)

where µ1, µ2 and µ3 are weight coefficients satisfying µ1, µ2 ≥ 0, µ3 > 0 and µ1 + µ2 6= 0, . The
performance index is selected as a sum of two integrals. The first integral is the dynamic response
of the beam and seeks to minimize the vibrations at the terminal time t = T . The second integral
is the penalty function that minimizes the magnitude of the control over the range 0 ≤ t ≤ T . The
optimal control problem is specified as

J (po(t)) = min
p(t)∈Pad

J (p(t)) (4.3)

subject to the system (2.1).

5 Boundary control

To apply maximum principle, let us define the adjoint system with the adjoint (costate) variable v
corresponding to (2.1) as follows:

ρAvtt + Svxxxx −Kvxxxxxx = 0 (5.1)

with homogeneous boundary conditions

v(0, t) = v(L, t) = 0,

vxx(0, t) = vxx(L, t) = 0,

vxxxx(0, t) = vxxxx(L, t) = 0,

(5.2)

and terminal conditions

ρAvt(x, T ) = 2µ1z(x, T )

−ρAv(x, T ) = 2µ2zt(x, T ).
(5.3)

Optimal control problem is reformulated using Pontryagin’s maximum principle, which asserts that
a necessary condition for optimal control function that minimizes the Pontryagin’s Hamiltonian.
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Since the Hamiltonian satisfies
∂H
∂p

(t, zo(t), po(t), vo(t)) = 0 and
∂2H
∂p2

> 0, the Pontryagin’s princi-

ple is also sufficient to be an optimal solution. It can be also said that the optimality conditions
obtained from results of maximum principle are sufficient conditions because of the convexity prop-
erty of the performance index. Pontryagin’s principle gives a clear statement for the optimal control
function by relating the state variable and the optimal control function implicitly. In this context,
Pontryagin’s principle is applicable to the optimal control problem (4.3) as described in the next
section.

6 Derivation of the maximum principle

The Pontryagin’s maximum principle for the optimal control problem is given as follows:

Theorem 6.1. If the optimal control function po(t) ∈ Pad, which causes the system (2.1) minimizes
the Hamiltonian so that

H(t; v, p) = KR(t)p(t) + µ3p
2(t) (6.1)

where
R(t) = vx(L, t)− vx(0, t) (6.2)

then
J (po) ≤ J (p). (6.3)

Proof. Let us form an operator

Γ(z) = ρAztt + Szxxxx −Kzxxxxxx (6.4)

and differences

∆z = z(x, t)− zo(x, t), (6.5)

∆p = p(t)− po(t). (6.6)

Evaluating the operator and differences gives

Γ(∆z) = 0, (6.7)

with the boundary conditions

∆z(0, t) = ∆z(L, t) = 0,

∆zxx(0, t) = ∆zxx(L, t) = 0,

∆zxxxx(0, t) = ∆zxxxx(L, t) = ∆p(t)

(6.8)

and initial conditions
∆z(x, 0) = ∆zt(x, 0) = 0. (6.9)

The following relation yields∫ L

0

∫ T

0

(∆zΓ(v)− vΓ(∆z))dtdx =

∫ L

0

∫ T

0

{[ρA(∆zvtt − v∆ztt)]︸ ︷︷ ︸
I

+S(∆zvxxxx − v∆zxxxx)︸ ︷︷ ︸
II

−K(∆zvxxxxxx − v∆zxxxxxx)︸ ︷︷ ︸
III

}dtdx = 0
(6.10)
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Carrying out integration by parts for I, II, III and using the terminal conditions Eqs. (5.3) gives

I =

∫ L

0

∫ T

0

ρA(∆zvtt − v∆ztt)dtdx = ρA

∫ L

0

(∆z(x, T )vt(x, T )−∆zt(x, T )v(x, T ))dx, (6.11)

II =

∫ L

0

∫ T

0

S(∆zvxxxx − v∆zxxxx)dtdx = S

∫ T

0

{∆z(L, t)vxxx(L, t)−∆z(0, t)vxxx(0, t)

−∆zx(L, t)vxx(L, t) + ∆zx(0, t)vxx(0, t)

+ ∆zxx(L, t)vx(L, t)−∆zxx(0, t)vx(0, t)

−∆zxxx(L, t)v(L, t) + ∆zxxx(0, t)v(0, t)}dt,

(6.12)

III =

∫ L

0

∫ T

0

−K(∆zvxxxxxx − v∆zxxxxxx)dtdx = −K
∫ T

0

{∆z(L, t)vxxxxx(L, t)−∆z(0, t)vxxxxx(0, t)

−∆zx(L, t)vxxxx(L, t) + ∆zx(0, t)vxxxx(0, t)

+ ∆zxx(L, t)vxxx(L, t)−∆zxx(0, t)vxxx(0, t)

−∆zxxx(L, t)vxx(L, t) + ∆zxxx(0, t)vxx(0, t)

+ ∆zxxxx(L, t)vx(L, t)−∆zxxxx(0, t)vx(0, t)}dt.
(6.13)

Combining these three results yields∫ L

0

∫ T

0

(∆zΓ(v)− vΓ(∆z))dtdx = ρA

∫ L

0

(∆z(x, T )vt(x, T )−∆zt(x, T )v(x, T ))dx

−K
∫ T

0

{∆zxxxx(L, t)vx(L, t)−∆zxxxx(0, t)vx(0, t)}dt

= 0.

(6.14)

Bringing into focus on the deviations of performance index gives

∆J (p) = J (p)− J (po)

=

∫ L

0

{µ1[z2(x, T )− zo
2

(x, T )] + µ2[z2t (x, T )− zo
2

t (x, T )]}dx

+ µ3

∫ T

0

[p2(t)− po
2

(t)]dt.

, (6.15)

The values of z2(x, T ) and z2t (x, T ) around zo
2

(x, T ) and zo
2

t (x, T ) by Taylor Series expansion,
respectively, are

z2(x, T )− zo
2

(x, T ) = 2zo(x, t)∆z(x, T ) + r1

z2t (x, T )− zo
2

t (x, T ) = 2zot (x, t)∆zt(x, T ) + r2
(6.16)

in which
r1 = 2(∆z)2 + ... > 0, r2 = 2(∆zt)

2 + ... > 0. (6.17)
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Substituting Eqs. (6.16) into Eq. (6.15) yields

∆J (p) =

∫ L

0

{2µ1[zo(x, T )∆zo(x, T )+r1]+2µ2[zot (x, T )∆zot (x, T )+r2]}dx+µ3

∫ T

0

[p2(t)−po
2

(t)]dt.

(6.18)
Applying the fact 2µ1r1 + 2µ2r2 ≥ 0 gives∫ T

0

K{vx(L, t)− vx(0, t)}∆p(t)dt+ µ3

∫ T

0

{p2(t)− po
2

(t)}dt ≥ 0. (6.19)

Then Pontryagin’s Hamiltonian is of the form

H(t; v, p) = KR(t)p(t) + µ3p
2(t), (6.20)

where R(t) = vx(L, t)− vx(0, t). Thus,

minH(t; v, p) = H(t; vo, po) (6.21)

yields J (po) ≤ J (p). q.e.d.

7 Simulations

In this section, the simulation operation with regard to Equation system (2.1) is performed with
boundary conditions. The efficiency and competence of the boundary control algorithm introduced
are simulated through computer codes produced in MATLAB . Optimal solutions of the microbeam
for the case with terminal time T = 4s and weight coefficient µ3 = 10−3 are shown in the simulations.
The other weight coefficients µ1 and µ2 in the first integral of the performance index functional are
considered as µ1 = µ2 = 1. It is known that the material length scale parameter of a microbeam
has been experimentally obtained as L = 17.6µm by Lam. [22], so the length of the microbeam is
taken as L = 17.6µm . The component part of the microbeam used in this study include aluminum
E = 70 GMpa, ρ = 2720kg/m3, v = 0.3 [23] . For the purpose of the simplicity, all three material
length scale parameters are assumed to be the same, i.e., `0 = `1 = `2 = L within the microscale
beam model. The values of the velocity and displacement of the beam are calculated at the exact
middle point. The introduced control algorithm is effective even if the coefficients are chosen as
desired. The response of the microbeam is analyzed subject to the initial conditions

z(x, 0) =
√

2 sin(πx), zt(x, 0) = 0. (7.1)

The controlled/uncontrolled displacements are shown in Fig. 1. It is observed that the vibrations
are close to zero at the terminal time. The controlled/uncontrolled velocities are also given in Fig.
2. As it is clear with the help of the figures, after applying the control action, vibrations of the
system are suppressed using minimum level of control.
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Figure 1. Controlled and uncontrolled displacements.
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Figure 2. Controlled and uncontrolled velocities.
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8 Conclusion

In this paper, optimal control solutions to a hyperbolic equation with boundary controls are ob-
tained. The examined model is used to describe nonlinear microbeam models based on the strain
gradient theory and the Hamilton’s principle. The performance index to be minimized indicates
controlling the dynamic response of the system while an affordable control is in use. Vibrations of
the microbeam is suppressed by designing proper boundary control mechanisms. This control mech-
anism is achieved with the forth order space derivatives of boundary states of the beam. Maximum
principle and eigenfunction expansion method as a numerical technique are used in the presented
approach. Besides, wellposedness of the optimal solution on the control set is presented and con-
trollability of the problem is analyzed. Moreover, to demonstrate the performance of the designed
boundary controllers via numerical simulation, the computer codes produced in MATLAB c© are
used. Finally, the theoretical results obtained in the study are verified with the help of numerical
simulations.
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